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Abstract  A reasonable initial state of ice concentration is essential for accurate short-term forecasts of sea ice using ice-ocean 
coupled models. In this study, sea ice concentration data are assimilated into an operational ice forecast system based on a com-
bined optimal interpolation and nudging scheme. The scheme produces a modeled sea ice concentration at every time step, based 
on the difference between observational and forecast data and on the ratio of observational error to modeled error. The impact and 
the effectiveness of data assimilation are investigated. Significant improvements to predictions of sea ice extent were obtained 
through the assimilation of ice concentration, and minor improvements through the adjustment of the upper ocean properties. The 
assimilation of ice thickness data did not significantly improve predictions. Forecast experiments show that the forecast accuracy is 
higher in summer, and that the errors on five-day forecasts occur mainly around the marginal ice zone. 
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1  Introduction* 

Satellite data regarding sea ice concentration have revealed 
the accelerated decline of the Arctic sea ice, especially in 
recent decades. The negative trend has reached a peak of 
~10% per decade, which is about 4 times that of the period 
1979–1996[1]. A decline in the multiyear ice extent and area 
has also been observed[2]. In addition to its indicative role in 
global climate change, the potential opening of the Arctic 
Route has spurred increasing interest in the forecasting and 
prediction of Arctic sea ice[3]. However, observational re-
cords of sea ice have a limited history, and cannot be used 
to reliably predict future sea ice extent. The application of 
numerical ice-ocean models enables the reconstruction of 
historical patterns of sea ice, and the ability to forecast and 
predict future change. However, forecasts of sea ice varia-
tion based solely on the coupled model can be limited[4]. A 
better option is to combine the ice-ocean model and obser-
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vational data to improve sea ice state estimates and fore-
casts using data assimilation techniques. These methods can 
be used for process studies, or to obtain the best possible 
information on the initial sea ice state for sea ice fore-
casts[5].  

Different assimilation methods have been applied in 
coupled ice-ocean models, assimilating ice concentra-
tion[6-8], and drift[9]. However, when data assimilation is 
used in an operational application, the efficiency of compu-
tation should be a priority. In this paper, we introduce the 
assimilation of ice concentration into an operational ice 
forecast system, based on a combined optimal interpolation 
and nudging method. The method was first introduced into 
the operational ice forecast system at the Norway Meteoro-
logical Institute by Wang et al.[8], and preliminary applica-
tions have shown positive results in terms of efficiency and 
accuracy.  

In forecast systems, forecast skill scores have been 
widely used to evaluate system performance. Murphy in-
troduced the use of the mean-square error as a measure of 
accuracy and discussed the nuances of using various defini-
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tions of the reference state[10]. He also showed that the 
critical element of forecast verification is the selection of 
the reference value. Here we choose the daily observation 
data of the corresponding time as a reference state for skill 
score calculation and conduct a preliminary evaluation of 
the forecast system’s performance. 

The model configuration is presented in Section 2 and 
followed by the introduction of the assimilation and evalua-
tion method in Section 3. Section 4 outlines the analysis of 
the model results and forecast ability evaluation, and dis-
cussion and conclusions are presented in Section 5. 

2   Model configuration 

The coupled ice-ocean model developed for this study is 
under the framework of the Estimating the Circulation and 
Climate of the Ocean, Phase II (ECCO2) program[11]. The 
ocean component is based on the MIT ocean general circu-
lation model (MITgcm), which employs fluid isomorphisms 
and can be used to simulate both atmospheric and oceanic 
flow[12]. A dynamic-thermodynamic sea ice model has been 
coupled into the MITgcm. The dynamic part is based on 
viscous-rheology[13], with the traditional zero-layer is 
adopted as the thermodynamic default[14]. However, Zhang 
and Rothroch revealed that the zero-layer model tends to 
exaggerate the seasonal variability of the sea ice thickness 
because there is no consideration of the sea ice heat capac-
ity[15]. This shortcoming can be significantly reduced by 
employing the three-layer thermodynamic module from 
Semtner, which accounts for the storage of heat in the sea 
ice[16]. Winton reformulated this three-layer module and 
improved the model physics by representation of the brine 
content of the upper layer ice with a variable heat capac-
ity[17]. We incorporated this reformulated thermodynamic 
module, with snow cover accounting for the flooding proc-
ess, into the MITgcm. The sea ice-ocean model is dynami-
cally coupled via exchange of momentum, heat, and buoy-
ancy between models at set coupling time intervals[18]. This 
framework has been used as the operational Arctic sea ice 
forecast system at the National Marine Environmental 
Forecasting Center (NMEFC) in Beijing, China[19]. 

In our configuration, the ocean and sea ice models 
share the same grid, a curvilinear-orthogonal grid derived 
from the global cube-sphere grid, with a resolution of ~18 
km. The model covers most regions north of 55°N and in-
cludes the entire Arctic Ocean. It has been used in a wide 
variety of studies including Arctic sea ice forecasts in 
China[19]. The forecast system was based on the direct in-
sertion of the initial ice concentration, which has potential 
inconsistency and stability problems. In this study we im-
plement ice concentration assimilation based on a combined 
optimal interpolation and nudging scheme, which can pro-
vide a more consistent initial state for short-term sea ice 
forecasts or seasonal predictions[8]. The model is forced by 
the JRA-25 reanalysis data, as outlined in Nguyen et al. [20]. 
The reanalysis data have been greatly improved for the 
Arctic region and have a higher spatial resolution, which 

further improves the performance of the ice-ocean coupled 
model used here. The model is integrated from 1992–2010, 
and the ice concentration is assimilated from 1 January 
2006.  

3  Assimilation scheme and evaluation method 

3.1  Assimilation scheme 

The assimilation method used here is the combined optimal 
interpolation and nudging scheme. At each time step, the 
model estimate Cmod is combined with a revised estimate 

modĈ  based on the relationship: 

mod obs modmod
ˆ ( )C C G G C= + − ,         (1) 

where G is the nudging coefficient and Cobs is the ob-
served ice concentration. The nudging coefficient is ex-
pressed as: 
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where K is the weighting coefficient of the optimal in-
terpolation for combining two estimations of the same 
quantity[21]: 
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where 2
mσ  and 2

oσ  are the standard deviations for 
modeled and observational data, respectively. The standard 
deviation 2

mσ  is approximated by 2 2m mod obs| |C Cσ = −  
and 2

oσ  is the error variance of the observational data. To 
improve the efficiency of the sea ice data assimilation, a 
better understanding of the errors in observational data is 
necessary[7-8]. Because of the practical difficulties in quan-
tifying the errors in sea ice concentration measurements, a 
fixed value of o 0.05σ =  is used. 

Finally, the nudging time scale τ  is chosen to be:  

0 mod obsexp[2.5( )]C Cτ τ= + ,           (4) 
where 0τ  is the homogeneous time scale, and the 

exponential component denotes the temporal and spatial 
variation of the time scale. Eq. (4) indicates that τ  
changes temporally and spatially during the entire assimila-
tion period. The exponential component is a parameteriza-
tion of the temporal and spatial variation in the nudging 
time scale. Numerical experiments show that this time scale 
formulation behaves better than using a constant value[8]. 

The modeled mean sea ice thickness and snow thick-
ness are adjusted to be consistent with the sea ice concen-
tration. For areas of non-zero modeled mean sea ice thick-
ness, the effective sea ice thickness (mean sea ice thick-
ness/sea ice concentration) and snow thickness (mean snow 
thickness/sea ice concentration) are assumed to remain un-
changed.  

3.2  Methods of forecast skill assessment 

The forecast skill score is a scaled representation of forecast 
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error that relates the forecast accuracy of a particular fore-
cast model to a reference simulation[10], and can be written 
as: 

MSESS 1 MSE
f

r
= − ,                (5) 

where the MSEf (forecast mean square error) is de-
fined as: 
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in which fi and Oi are the ith forecast and observation, 
respectively. Correspondingly, the forecast value fi is re-
placed with the mean observation values for the corre-
sponding times in the definition of MSEr in Eq. (6), such 
that: 
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The mean observation data at the corresponding time 
are defined as:  
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A forecast skill of 1 indicates a perfect forecast, with a 
negative score indicating the forecast is less accurate than 
the reference experiment.  

4   Analysis of results 

4.1   Sea ice area 

A good understanding of the seasonal cycle of sea ice varia-
tion and sufficient remote sensing data regarding sea ice 
extent are important for accurate short-term sea ice fore-
casts. The most convenient parameter to validate the model 
performance is sea ice concentration. 

The time series data for sea ice area presented in Fig-
ure 1 compares the performance of different model setups. 
Sea ice areas derived from observational and modeled re-
sults show similar behavior. In the free-run mode, the 
model is better at accurately capturing the freezing process 
than the melting process. For the melt season, the model 
overestimates the rate of sea ice melting from June, and 
underestimates the minimum sea ice area as compared to 
observations. Most of this bias is a result of the lower con-
centration of the entire ice pack in the numerical model. 
With the assimilation of sea ice concentration data, the 
modeled seasonal cycle of sea ice variation is more consis-
tent with the observed cycle, especially in the summer. 
However, there is still a slight difference during the month 
of rapid melting. As pointed out by Lindsay and Zhang[7], 
the difference is not zero because the observational data are 
not heavily weighted. However, reasonable performance of 
the model-only simulation, without the benefit of assimila-
tion, is a precondition for improved results from assimila-
tion, since data assimilation is not appropriate for correcting 
very large model errors. For example, in the summer season, 

if the sea ice is melting rapidly, heat could be stored in the 
upper ocean inducing higher sea surface temperatures, and 
it could be difficult to maintain the accuracy of sea ice 
modeling using assimilation. 

 
Figure 1  Daily sea ice area of the Arctic Ocean in 2006 (area is 
defined as the product of ice concentration and grid area). 

4.2  Sea ice thickness 

Sea ice thickness is an important parameter to characterize 
sea ice properties. Submarine data were widely used before 
the application of remote sensing techniques, though most 
of the observations were carried out in the late spring[22-23]. 
In recent years, it has been proved that the retrieval of sea 
ice freeboard and thickness data from the laser altimeter on 
the Ice, Cloud and land Elevation Satellite (ICEsat) is fea-
sible. Basin-wide ice thickness estimates from ten ICEsat 
campaigns have been produced and the comparison with 
the submarine and moored profiling data showed these data 
to be consistent and of good quality[24]. The advantage of 
the ICESat data is that they capture the large-scale pattern 
of sea ice thickness distribution, which provides the oppor-
tunity to assess the ability of the model to reproduce the 
spatial pattern of Arctic ice thickness. Difference maps are 
also computed for each ICESat campaign in 2006. The 
overall pattern of the observed and modeled basin-wide sea 
ice thickness distribution is very consistent. Pattern correla-
tions are high, with R2 values of 0.79 (FM06, Figures 
2a–2b), 0.88 (MJ06, Figures 2c–2d), and 0.85 (ON06, Fig-
ures 2e–2f), and the general pattern seen is similar to pre-
vious studies[7,24-25]. The thickest ice is mainly situated 
along the northern coast of Greenland and in the Canadian 
Archipelago (Figures 2a, 2c and 2e). However, compared 
with the ICESat observational data, the modeled ice thick-
nesses are smaller, and the meridional gradients are 
smoother. The difference maps show that the model overes-
timates the sea ice thickness in most of the Pacific sector of 
the Arctic Ocean and in regions close to the Siberian coast, 
but underestimates thickness in the multiyear ice region 
along the northern coast of Greenland and the west coast of 
Greenland in winter. Lindsay and Zhang[7] and Mathiot et 
al.[5] reported similar findings. Even when the ice velocity 
field is also assimilated[7], the spatial pattern of the model 
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bias still exists. Lindsay and Zhang[7] proposed that there 
might be some large-scale error in either the thermody-
namic or dynamic process components of current sea ice 
models. It should be noted that there was successful capture 
of the large polynya around the Northwind Ridge, present 
in the summer of 2006, in the ice thickness field (Figure 2), 
which implies that the prediction of ice thickness using ice 
concentration data assimilation is feasible. 

 
Figure 2  Modeled ice thickness distribution (Figures 2a, 2c and 
2e) for three data periods corresponding to the data campaign in 
2006, and the differences between modeled and observational data 
(Figures 2b, 2d and 2f). FM06:22 Feb to 27 Mar; MJ06:24 May to 
26 Jun; and ON06:25 Oct to 27 Nov. The model data are averaged 
for the same period and interpolated onto the observational grid. 

It is important to stress that there are also uncertainties 
in the observational data on sea ice thickness. Uncertainty 
for the Arctic Ocean average sea ice thickness from obser-
vations is estimated by Kwok and Rothrock[24] to be ~30 cm. 

Other ice thickness data sets also contain uncertainties and 
bias[23, 25]. At present we cannot determine whether this is a 
result of deficiencies in the model or deficiencies in the 
observations. A thorough evaluation of modeled thickness 
with respect to observations is not possible at this time be-
cause of the sparseness and uncertainty of sea ice thickness 
observations. 

4.3  Impact of sea ice concentration assimilation on 
the ocean state 

Because the ice and ocean properties are physically coupled 
in the model, the adjustment of sea ice concentration during 
the assimilation step will have a great impact on the ocean 
state directly below and adjacent to the ice. To ensure the 
validity of the numerical forecast model and the assimila-
tion method, consistent adjustment of related variables dur-
ing the analysis updates should be guaranteed. In the cur-
rent implementation, no artificial adjustment is applied to 
the ocean variables, but dynamic adaptation is allowed, and 
the results show that the simulated field is reasonable. 

An example from the model results showing the dif-
ference in sea surface temperature (SST) (Figures 3c–3d) 
and sea surface salinity (SSS) (Figures 3e–3f), along with 
the ice concentration difference (Figures 3a–3b), is shown 
in Figure 3 for two different dates, one in summer (15 Sept, 
left column) and one in winter (15 Mar, right column). It 
should be noted that the ice concentration difference is the 
daily average, while the SST and SSS difference fields re-
flect cumulative effects of the assimilation. 

 From the difference field, it can be seen that the as-
similation of ice concentration has a visible effect on the 
upper ocean variables. The assimilation of ice concentration 
mainly affects the ice edge region, and in the winter, most 
of the difference is seen in the Atlantic sector. Sea ice con-
centration along the west coast of Greenland is too wide in 
the model-only simulation, but its southward extension is 
less than the observations and assimilation results. This 
could further influence deep convection for long-term inte-
gration in the Labrador Sea. Sea ice concentration in the 
northern Barents Sea and the Labrador Sea are also overes-
timated in the model-only run. This difference is also re-
flected in the SST and SSS fields, more ice induces lower 
surface temperatures around the sea ice edge region in the 
Atlantic sector. Around Iceland, too much ice induces lower 
SSS, which also implies that the ice here is mainly advected 
from the north, not locally generated by thermodynamic 
growth. 

Compared with the winter, the differences in summer 
are more significant and the assimilation of ice concentra-
tion also mainly affects the results regarding the marginal 
ice zone (Figure 3a). The model-only simulation underes-
timates the sea ice concentration in most of the marginal ice 
zone, except around the Svalbard coast. Of interest is the 
presence of a large polynya around the Northwind Ridge 
region of the Beaufort Sea in 2006, which is not captured 
by the model-only run. This could be because of the low 
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resolution of the atmospheric reanalysis forcing field. 
However, in the assimilation experiment, the polynya is 
captured, not only in the ice concentration field, but also in 
the ice thickness field. The SST difference field is nega-
tively correlated because the slowed sea ice melting in the 
summer season (Figure 1) delays and reduces the absorp-
tion of heat input from the atmosphere. The SSS difference 
also reflects the slowed sea ice melting out of the marginal 
ice zone. The sea ice melting is stronger in the previous day 

compared to the model-only run, which reduces the SSS. 
This pattern is positively correlated with the SST change. 
However, inside the ice pack in the summer, the SSS dif-
ference is also significant. This is a result of the overesti-
mation of the sea ice melting in the model-only run, in 
which sea ice concentration is lower than the observational 
and assimilation simulations, and which induces more ice 
melting inside the ice pack and lower surface salinity.  

 
Figure 3  Effect of the assimilation on sea ice concentration (a–b), sea surface temperature (c–d, SST, Units: ℃), and sea surface salin-
ity (e–f, SSS, Units: PSU). 
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4.4  Forecast experiment 

Short-term sea ice forecasts mainly focus on short time 
scales of 5–7 d. For example, the U.S. Navy Global At-
mospheric Prediction System (NOGAPS) offers a 120-hour 
forecast of sea ice concentration, drift, and thickness[26]. In 
this experiment, the assimilation scheme is applied at the 
initialization of the sea ice forecast system. The forcing 
fields are the same as in the previous experiment but the 
difference is that the ice concentration assimilation is closed 
when the forecast starts. Four groups of forecast experi-
ments were carried out and each ran for 20 d. 

The development of skill as defined in Eq. (5) is de-
picted in Figure 4 for the 20 d of the forecast runs. Different 
markers distinguish the different forecast experiments at 
four times of the year in 2010. The higher skill values of the 
assimilation experiment relative to the forecast without data 
assimilation clearly show the improvement that results from 
the data assimilation procedure. The numerical model with 
data assimilation reproduces sea ice conditions in very 
close agreement with remote sensing data. The experiment 
without data assimilation shows consistently lower skill 
values throughout the forecast period. However, the skill 
values for the assimilated model run decrease with time 

because the positive influence of the assimilated observa-
tion decreases with time. In addition, the modeled sea ice 
forecast is also dependent on the atmospheric forecast con-
ditions, which are also subject to increasing errors with 
time. 

 
Figure 4  Skill scores relative to the reference simulation for the 
forecast experiment (blue) and the free run (red). The bold solid 
and dashed lines with squares denote the 15 Aug forecast and 
free-run skill scores, respectively. The solid and dashed lines with 
circles denote the 15 Sept forecast and free-run skill scores, re-
spectively. The lines with triangles are the winter experiments.  

 
Figure 5  Spatial characteristics of the forecast ice concentration from 15 Sept, and the difference between modeled and observational 
data. Day 1 forecast result (a) and the difference field (b), Day 5 forecast result (c) and the difference field (d). 
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The model performance has been improved signifi-

cantly through the optimization of the parameters related 
ice-ocean processes in the Arctic region, and so can give a 
more reasonable simulation/forecast field even without as-
similation. Improved reference data gives a higher skill 
score than the climatology reference.  

The sea ice concentrations predicted by the model and 
the difference between modeled and observational data for 
Days 1 and 5 of the forecast experiment are shown in Fig-
ure 5. It can be seen that the model captures most of the 
characteristics of the sea ice distribution and variation. 
Most of the variance occurs at the marginal ice zone, where 
sea ice variations occur rapidly, especially in the western 
Arctic Ocean. Overall, the sea ice concentration field be-
comes smoother with forecast time, which could be a result 
of the low resolution of the forcing field.  

5  Summary and conclusions 

A reliable and consistent analysis of the initial sea ice state 
is essential for short-term forecasts of sea ice conditions. 
Using a combined optimal interpolation and nudging tech-
nique, satellite sea ice concentration data were assimilated 
into a regional ice-ocean coupled model. This improved the 
explained variance between model prediction and observa-
tion. During the assimilation process, only ice thickness is 
tuned corresponding to the ice concentration updates. Other 
prognostic variables can only be changed through dynami-
cal coupling of the model system. Results revealed that the 
response of the main upper ocean properties is acceptable.  

With application of the best possible analysis of sea ice 
concentration and the optimal forcing conditions in the nu-
merical model, a forecast of sea ice conditions for 5–10 d 
produces realistic results. This study shows that the model 
simulates sea ice conditions with reasonable accuracy. 
However, data assimilation techniques require careful con-
sideration of physically coupled variables. At present, ice 
concentration is the most accessible sea ice parameter, since 
it can be monitored from satellites, and improved algo-
rithms allow for a realistic estimation of sea ice concentra-
tion from these remote sensing data.  
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